FutureBridge

METHANE PYROLYSIS: Turquoise Hydrogen

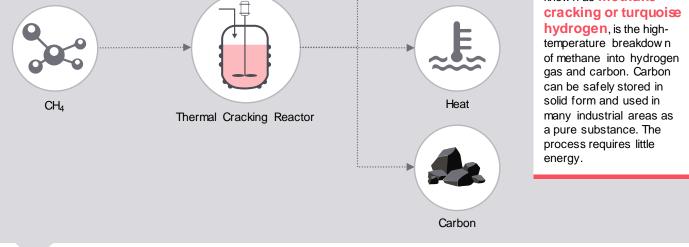
Low-carbon hydrogen production techniques are being investigated as a potential replacement for the existing steam-methane-reforming production of "grey" hydrogen, which is being touted as a promising energy vector for a decarbonized world

Overview of non-electrolyzer technologies

Compared to other non-electrolyser technologies, the cost of the hydrogen produced by methane pyrolysis is lower

H₂ production technologies	Developers	Feedstock	Temperature range (°C)	Overall energy efficiency	Price* (\$/Kg H ₂)	Emissions (kg/ kg H ₂)	Maturity
Methane Pyrolysis	CIJZERO CEAZPROM	Natural Gas or Biomethane	1000 – 1500	58%	1.6 – 2.2	0 - 3.1	Commercial
Thermochemical water splitting		H_2O & heat	500 - 1800	20%-45%	3-7	-	Early development
Biomass Gasification	SG H2 ENERGY COCH2	Biomass	500 - 1400	35%-50%	1.77 – 2.05	0 – 11	Near term
Microbial (Fermentation)	MONASH University	Biomass	30 - 80	<20%	2.08-2.83	_	Early dev elopment
Photo-catalysis	EPFL SunHydrogen	H ₂ O	_	<20 %	_	_	Early development
Plasma reforming	TRANSFORM MATERIALS	Natural gas or biomethane	~5000	>80%	3-6	_	Near term

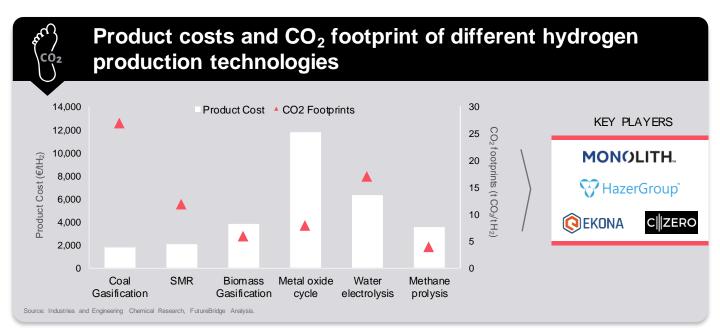
Note: Near term refers to the technology that has been demonstrated by prototype and getting ready for commercialization. * Prices are indicative and mostly supported from estimations from simulation models.


Methane Pyrolysis – An Upcoming Non-Electrolysis Technology

Methane pyrolysis is a fundamentally new process technology that splits natural gas or biomethane directly into the components of hydrogen and solid carbon

Methane pyrolysis, also know n as **methane** cracking or turquoise

ADVANTAGES OVER CONVENTIONAL METHOD OF HYDROGEN PRODUCTION

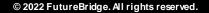

The costs of producing hydrogen are half of the conventional steam methane reforming processes

Existing value chain of Methane is utilized for hydrogen production leading to hydrogen production in large quantities, thereby fulfilling the requirement of the industrial use

Methane retains its value by becoming a clean feedstock for industrial production processes

Economic Analysis of Methane Pyrolysis

PARAMETER		VALUE			
Required natural gas capacity (or biomethane)		800 – 980 (kta)	The key advantage methane pyrolysis over water		
Reaction Temperature (high feed rate)		1000 – 1500 (°C)			
Purchased cost of equipment		56 – 64 (\$million)	electrolysis is the		
Share of the cost	Electric arc heater	~80%	availability of feedstock through		
	Pyrolyzer	~0.3%	existing natural gas infrastructure, whereas electrolys is heavily reliant on the price and		
	Carbon Bed	~0.2%			
	Pressure Swing Adsorption (PSA)	~15%			
	Heat Exchanger	~10%			
Fixed capital investment		564 – 645 \$million	availability of		
Total cost of H ₂ production		1.5 – 1.9 (\$/kg H ₂)	renewable electrici		
Tonne CO_2 emitted per tonne of H_2		0-3.1			



About FutureBridge

FutureBridge tracks and advises on the future of industries from a 1-to-25 year perspective.

We keep you ahead on the technology curve, propel your growth, identify new opportunities, markets and business models, answer your unknowns, and facilitate best-fit solutions and partnerships using our platforms, programs, and access to global ecosystems and players.

